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ABSTRACT: Evaluation of important pharmacokinetic prop-
erties such as hydrophobicity by high-throughput screening
(HTS) methods is a major issue in drug discovery. In this
paper, we present measurements of the chromatographic
hydrophobicity index (CHI) on a subset of the French
chemical library Chimiotheq̀ue Nationale (CN). The data
were used in quantitative structure−property relationship
(QSPR) modeling in order to annotate the CN. An algorithm is proposed to detect problematic molecules with large prediction
errors, called outliers. In order to find an explanation for these large discrepancies between predicted and experimental values,
these compounds were reanalyzed experimentally. As the first selected outliers indeed had experimental problems, including
hydrolysis or sheer absence of expected structure, we herewith propose the use of QSPR as a support tool for quality control of
screening data and encourage cooperation between experimental and theoretical teams to improve results. The corrected data
were used to produce a model, which is freely available on our web server at http://infochim.u-strasbg.fr/webserv/VSEngine.
html.

Since the advent of robotized biological testing in the 1990s,
access to large, diverse, and original compound collections

has become a major issue in drug discovery. However, handling
of such collections raises important logistical and technical
challenges, in particular because compound originality, a
prerequisite for patentability, is by definition not the hallmark
of standard, well-conditioned commercial collections accessible
to everyone. Extensive analytical assessment of purchased
compound collections is therefore a time-consuming and cost-
intensive key issue, for its automation may go only as far as
automated recording followed by error-prone machine
interpretation of analysis results. Time and resources for in-
depth structural analysis is lacking; therefore, standard purity
measures are necessary but hardly sufficient.1,2 In standard
liquid chromatography/mass spectrometry (LC/MS) analysis,
purity is taken as granted if an LC peak of expected mass is
“predominant”. However, the tacit assumptions that (a) the
correct mass actually stands for the expected isomer and (b)
the sensitivity of the detector is the same for the main
compound and the potential impurities are virtually never
checked. In practice, in-depth structural analysis is postponed
to the hit reconfirmation stage, for allegedly active molecules
only.

In this context, academic compound collections such as the
Chimiotheq̀ue Nationale (CN), the French national chemical
library regrouping original compounds issued from nationwide
academic research, is a valuable asset in terms of originality and
diversity but a logistical nightmare. Compounds are issued from
different laboratories, conditioned according to different
operating rules, and stored under variable conditions before
being sent to the central repository. The CN therefore requires
quality control. A “Projet Interdisciplinaire de Recherche”
(PIR) has been conceived as a showcase project to illustrate the
use of this collection in (high) throughput screening (HTS)
tests and to highlight and fix various pitfalls due to the peculiar
nature of this collection. PIR was aimed at annotating the CN
with respect to hydrophobicity, solubility, and acidity by using a
diverse subset of 640 molecules, named the “Chimiotheq̀ue
Nationale Essentielle” (CNE), as a representative core of the
CN. It was not tailored for drug design and therefore includes
reactive and nondruglike molecules as well. The CNE
molecules were then cherry-picked and submitted to standard
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quality control (QC) based on LC/MS purity check at the
Integrative Chemical Biology Platform of Strasbourg (PCBIS).
Parallelized and rapid measuring of the envisaged phys-

icochemical properties was carried out at the TechMedILL

Platform in Strasbourg. Hydrophobicitythe first measured
property and the one concerned in this paperis an important
property for medicinal chemists.3 It is widely used as a criterion
for acceptable drug solubility and permeability.4 It has been
shown to be related to absorption distribution metabolism
excretion/toxicity (ADME/T) properties for over a century.5 It
has classically been evaluated by the octanol−water partition
coefficient log Po/w after the proposal of Hansch and Fujita

6 and
measured by the shake-flask method. However, this method is
time-consuming and a modern HTS method using high-
pressure liquid chromatography (HPLC) originally developed
by GlaxoSmithKline researchers7,8 has been used to assess the
CNE, the chromatographic hydrophobicity index (CHI).
In reverse-phase HPLC, the partition between a hydro-

organic mobile phase and a C-18 stationary phase is governed
by hydrophobicity. The organic solvent percentage in mobile
phase necessary for elution is referred to as the isocratic
chromatographic hydrophobicity index (ICHI), which is thus a
good alternative to log Po/w measures.9 However, this measure
requires testing several mobile phases with different organic
solvent percentages and thus is time- and resource-consuming.
This is why an alternative method based on a fast gradient was
developed. The measured retention time in such columns are
linearly correlated to ICHI7 and to log Po/w.

8 The method uses
a linear calibration generated from the retention times obtained
for a set of 10 standard compounds with known ICHI values.
For any new compound, the retention time transformed by this
calibration gives a number which is referred to as the CHI. This
method is cost-effective and very economical in terms of
compound requirement and solvent. To conclude, CHI is a
measure of retention of the test compound on a fast gradient C-
18 column.
It shall be noted that for compounds whose retention is not

significant, a negative CHI value will be returned, meaning very
low hydrophobicity. For compounds that are not easily washed
off the column, a CHI value of >100 is obtained, signifying very
high hydrophobicity. But a linear relationship between CHI and
ICHI is observed only between 18.4 and 96.4 (the most
extreme calibration values). It is important to note that this
CHI range covers that of molecules that cross intestinal and
brain barriers spontaneously. Molecules with CHI <0 or >100
are not useful in drug discovery programs.
Chemoinformaticians exploited the measured CHI data to

build associated quantitative structure−property relationship
(QSPR) models on the basis of the CNE diverse training set.
The aim was to build useful models in order to annotate all the
other academic molecules of the CN by their predicted
properties and also to enable chemists to make predictions for
novel structures, via a publicly accessible QSPR prediction web
server. QSPR models are mathematical models fitted on the
data that return an estimate of the expected property on the
basis of molecular descriptors serving to numerically encode the
features present in the chemical structure. Parameter fitting is
done to ensure that, for each training compound (of known
property Y), the model will return a predicted Ypred very close
to Y (following the classical least-squares principle). The
molecular descriptors used in this study are the ISIDA
property-labeled fragment counts.10 Fitting was performed
mainly by use of support vector machines (SVM),11 because of

the robustness of the produced models. Other machine learning
methods were also tried out.
The main insights gained from this work come from the

systematic failures observed in modeling. We define outliers as
compounds for which their calculated property value Ypred
could never be brought in agreement with the observed Y,
irrespectively of the employed model-building strategy. This is
in line with the classical definition of an outlier as an
observation that is numerically distant from the rest of the
data.12 We propose a method for their systematic annotation
and then to submit them to in-depth experimental scrutiny.
The observed discrepancies between Y and Ypred were much
higher than the expected model imprecisions, and yet
independent of modeling premises it was hypothesized that
this could be due to real differences in molecular structures:
thus the actual molecule returning the measured Y might not
correspond to the nominal structure for which Ypred was
estimated. We identified three periods during which a chemical
alteration might have occurred: (a) since the CNE QC, during
storage; (b) before the CNE QC, without being detected at
that stage; or (c) during the actual hydrophobicity measure-
ment, due to reaction with the aqueous buffer.
Systematic analysis of outliers actually revealed the above

hypothesis to be basically correct. This signifies that a properly
built QSPR model (with minimized modeling artifacts such as
overfitting) is robust enough to highlight experimental errors.
Building a QSPR model in parallel to experimental assessment
of a library is not a costly undertaking and may effectively
pinpoint potential experimental pitfalls, focusing the need for
in-depth further analysis to the potentially “pathological” items.
This could be an important first step toward the use of QSPR
approaches for regulatory purposes, instead of experimental
measurements, as envisaged by the REACH project (for
registration, evaluation, authorization, and restriction of
chemicals).13

This paper is organized in order to follow the chronology of
the different experimental and modeling steps within the study.
First the experimental protocol and results of the CHI
measurements is presented, followed by an outline of the
computational procedures and the outlier management section.
Outlier management contains the initial building of the models,
the modeling protocol for the identification of the outliers, their
experimental validation, and a presentation of the results with a
discussion. Finally, the consensus model, build after removal of
outliers and doubtful molecules from the set is presented,
followed by a conclusion section.

■ CHROMATOGRAPHIC HYDROPHOBICITY INDEX
MEASUREMENTS

The 640 CNE compounds were received in eight microplates
containing 10 mM dimethyl sulfoxide (DMSO) stock solutions.
CHI measurements were done on a Gilson HPLC system with
a photodiode array detector, an autosampler, and a Valco
injector. Data acquisition and processing were performed with
Trilution LC V2.0 software. Measurements were carried out at
20 ± 2 °C. A 5 μm Luna C18(2) column (50 × 4.6) purchased
from Phenomenex was used. The mobile phase flow rate was 2
mL/min and the following program was applied for the elution:
0−0.2 min, 0% B; 0.2−2.7 min, 0−100% B; 2.7−3.2 min, 100%
B; 3.2−3.4 min, 100−0% B; and 3.4−6.1 min, 0% B. Solvent A
was 50 mM ammonium acetate (pH 7.4) in water, and solvent
B was HPLC-grade acetonitrile (Sigma−Aldrich Chromasolv).
The detection wavelengths were 254 and 230 nm.
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First, a solution with 10 reference compounds with known
ICHI values (see Supporting Information section 1) was
injected onto the HPLC to generate a calibration line from
their retention times (see Figure 1). The concentration of the

mixture was 0.2 mg/mL for each compound and the injected
volume was 3 μL. A typical chromatogram of the standard
solution is represented in Figure 2. The test compounds were
analyzed on the same system. The 10 mM DMSO stock
solutions were diluted to 200 μM in acetonitrile/50 mM
ammonium acetate, pH 7.4 (1/1 v/v). The linear regression
equation of the calibration line was used to convert retention
time of the test compounds to CHI values (CHI 1 in Table 1).
The experimental procedure for CHI measurement was

applied to all 640 molecules of CNE, and several experimental
complications arose (see Figure 3). CHI values of 418
compounds were measured without any complications. The
protocol is based on ultraviolet−visible (UV−vis) detection;
therefore, compounds lacking chromophore moieties cannot be
detected by this method, which was the case for 10% of the
molecules. In addition, nothing has been detected for 4% of the
molecules for unknown and probably undefined reasons
(presumably compound insolubility or instability in DMSO
or degradation in test buffer). Several peaks were detected for

36 compounds (6%), indicating impurity or degradation.
Hence, matching a peak to the molecule drawn in the database
is difficult. It was assumed that the most intense peak
corresponds to it. Compounds that gave peaks with low
intensity were considered but with caution, because it
demonstrates a solubility problem. Finally, CHI values were
measured for 545 molecules and complications were annotated
in the database.

■ COMPUTATIONAL PROCEDURE
The computational workflow used in this work is given in
Figure 4. Steps 1−5 are described in this section, whereas steps
6−8 are reported under Final Consensus Model.

Compound Standardization. The molecules were stand-
ardized by removing salts, stripping off hydrogens from the
molecular graph, choosing a standard representation for groups
such as nitro or imidazole, and generating major tautomer as
well as major microspecies at pH = 7.4 with ChemAxon’s
Calculator plugin.14

Descriptors Calculation. ISIDA property-labeled descrip-
tors,10 a type of fragment count descriptors, were calculated.
Sequences, extended augmented atoms, and triplets were
computed on the molecular graph, which has been “colored”
with one of the following properties: atomic symbols,
pharmacophoric flagging, electrostatic potentials, or force field
typing. The length of fragments varied for the minimum from 2
to 4 and for the maximum from 4 to 8. Further variants were
then introduced for some of these, by toggling additional
options: switching to “Atom pairs” mode, enabling “all path
exploration”, and the explicit representation of the formal
charge. A total of 2772 descriptor pools were eventually
generated.

Machine Learning Techniques. SVM was chosen as the
reference machine learning because of its stability, mainly due
to its particular error function. The Libsvm 3.12 package11 was
used for generation of ε-SVM regression models with a linear
kernel, and ε was set equal to the random experimental error
estimated at 2 CHI units. The cost was tested for 28 different
values ranging from 0.1 to 100. Model building included both
operational parameters fitting (as required by the libsvm
approach) and, most important, required cross-validation

Figure 1. Calibration of the HPLC column: relationship between
retention times and CHI values.

Figure 2. Typical chromatogram of the standard solution.
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techniques15 to avoid overfitting. The final model selection
criterion therefore was 5-fold cross-validated root-mean-
squared error (5CV-RMSE) (see Supporting Information
section 2 for details on statistical parameters).
Partial least-squares (PLS) regression models16 and

stochastic quantitative structure−activity relationship (QSAR)
sampler (SQS) regression models17 issued from selected pools
of descriptors were also built for comparison purposes.
Model Selection. In total, 2772 × 28 = 77 616 individual

models (each corresponding to a particular descriptor pool and
a particular value of cost parameter) have been obtained for a
given data set. Several “best” models were selected according to
5CV-RMSE. All selected models were used for consensus
predictions on the external test set: for each molecule, the CHI
value was calculated as an arithmetic average of predictions
made by selected individual models.
Outlier Identification Protocol. In this section we discuss

the identification of recurrent outliers observed in different
modeling strategies. The term “outlier” designates, in the
following, a compound for which the predicted value returned
by a model having used this molecule for learning strongly
diverges from the experimental value.
The list of outliers, submitted to in-depth analysis in order to

attempt reconfirmation of these experimental values that could
not be explained by modeling, was gathered by an eliminate-
and-ref it protocol on the basis of N best models. At each step of
the prediction, a given data point is considered anomalous if its
calculation error at the fitting stage is higher than a threshold
Cout. This threshold is computed as twice the highest 5CV-

RMSE found in the set of N values from each SVM model: Cout

= 2max(5CV-RMSE). The outlier list was iteratively built as
follows:
(1) The molecule with the highest number of anomalous

estimates is chosen, based on the current value of Cout. In the
event of a tie, the molecule with the highest absolute mean
prediction error is chosen.
(2) The corresponding compound is removed from the

modeling data set and the N models are refitted. The
operational parameters are not reoptimized.
(3) The experimentally measured CHI value in discrepancy

with the prediction is challenged, by a thorough reanalysis of
the compound (see Experimental Reassessment of Outliers).
(4) The procedure is repeated from step 1 until no more of

the apparently irreconcilable experiment−prediction discrep-
ancies can be attributed to measurement problems (cases a−c
listed previously).
The choice of using fitted values is more logical than using

5CV-predicted values as model “output” to compare to the
experimental value. Indeed, discrepancies between 5-CV-
predicted values and experiment are more likely to occur,
especially for species at the edge or outside the applicability
domain.18 If the model has already learned from a molecule, it
should be able to predict it. However, if the fitted value of a
molecule is in discrepancy with the measured data, this
indicates that the molecule goes against what the model learned
from other molecules. The stepwise manner of this protocol for
picking out outliers instead of selecting several on the same
model ensures that the presence of the biggest outlier does not

Figure 3. Experimental status of CHI measurements on 640 molecules: green, no problems detected; red, failures to determine the CHI value; and
blue, measurements accompanied by observed side phenomena that may signal artifacts, all while nevertheless allowing some CHI value to be
recorded.

Figure 4. Computational workflow used in this work.
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significantly skew the calculated values for other compounds.
When one molecule is eliminated from the training set, the
model is refitted and changes. Thus, it cannot be assumed that
the molecule with the biggest error on the rebuild model is the
same as the second biggest in the initial model. Besides, the fact
that a compound appears as outlier for several models is a
concept of paramount importance to this analysis because it
permits convergence toward problematic molecules identified
by different points of views.

■ OUTLIER DETECTION, VALIDATION, AND
ANALYSIS

Outlier Detection. Ten models out of 77 616 built on the
parent set of 545 compounds were selected according to 5CV-
RMSE. The best of them involves atom-centric fragments
colored by atomic symbols with a range of 2−4 atoms, with the
use of formal charges, and with a SVM cost of 0.5. It has a train-
RMSE of 11.2 and a 5CV-RMSE of 19.6. The obtained models
show several recurrent outliers (see Figure 5).
The CNE set is the biggest collection of CHI values found in

the literature. It is a very reliable source of data, as it was
measured by the same scientist, with the same equipment, in
the same conditions (room temperature, solutions used). Thus,
the hypothesis that the data cannot be modeled due to multiple
protocol incoherencies was discarded. A closer analysis of the
structure of those molecules showed that some contained
potentially reactive groups, leading us to foresee that problems
may concern certain experimentally measured values, even
though, in most cases, no peculiar complications were noted
during these measurements.
In order to check if the relatively poor model performance is

due to inclusion in the training set of molecules for which some
experimental complications were detected (blue portion of the
chart in Figure 3), modeling was performed on the set of 418
molecules measured without any complications (green portion
of the chart in Figure 3). We did not observe any significant
improvement of performance, and thus it was expected that
reported experimental problems were not indicative of data
limiting the quality of the models, as outliers would.

If experimental annotation were not sufficient to discard
suspicious data, the question was to which extent are QSPR
models able to highlight problems in a set of data issued from
an HTS experiment? On the one hand, it is interesting to see
how many of those with known experimental problems are
perceived as outliers. Are outliers with no apparent
experimental problems affected by issues that were not
observable during the CHI measurement protocol?
To answer these questions, the eliminate-and-ref it protocol

described under Computational Procedure has been applied for
the 10 best SVM models (see the model parameters in
Supporting Information section 3). This led to the detection of
the 24 outliers listed in Table 1. Unsurprisingly, outliers
detected at the fitting stage also behave erratically during 5CV
(see Figure 5).
To ensure the outliers did not contain unique features that

would make them fundamentally different from the others in
the training, 1-SVM19 using a linear kernel was applied at
varying v parameters. The outlier distribution is homogeneous
within the data set. The percentage coverage within the outliers
corresponds to the percentage coverage within the data set. If
these outliers differed structurally from the other molecules
within the set, they would never be within the dense area
defined by the 1-SVM.

Experimental Reassessment of Outliers. The exper-
imental check of compounds annotated as outliers was done by
the TechMedILL Plateform. CHI values of the compounds
identified as outliers were measured a second time (CHI 2 in
Table 1) and solutions were submitted to mass spectrometry
recharacterization in order to explain differences found between
experimental and predicted CHI values. Fresh DMSO stock
solutions were prepared from powders except for four
compounds for which powder was not available (indicated by
asterisks in Table 1). The powder should contain less
impurities and eventual chemical degradation is less likely to
occur than in the stock solution.
First, these solutions were used to determine the CHI values

again by the same procedure explained previously (see
Chromatographic Hydrophobicity Index Measurements),

Figure 5. Experimental vs predicted CHI assessed (a) at the fitting stage and (b) in 5-fold cross-validation for the best SVM model (see Outlier
Detection, Validation, and Analysis). The numbers indicate the outliers detected in the eliminate-and-ref it protocol and listed in Table 1.
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Table 1. Outliers List and Experimental Resultsa
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Table 1. continued
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which permits us to check whether the stock solutions
distributed by the CN had problems. Second, a LC/MS
characterization was done to confirm or invalidate the presence
of the expected compound (see MS column in Table 1), as
described by its theoretical structure in the database. Any error
in this drawn structure will induce an error in the QSPR

estimate, as the descriptors calculated will not correspond to
the actual measured structure. A LCMS-8030 triple-quadrupole
liquid chromatograph mass spectrometer was used for these
quality control measurements. Ionization of compounds was
done with an electrospray source. Both single-ion monitoring
and scan modes were used. The first mode was applied in order

Table 1. continued

aCHI 1 is the first CHI value, obtained with DMSO solutions in plates received from the central repository (the whole set was measured with UV−
vis detection and used for the first modeling). CHIpred stands for CHI average prediction and corresponds to the average prediction over the 10 best
SVM models in the iterative procedure. CHI 2 is the second CHI value, obtained with fresh solutions prepared from powders (except for those
marked with asterisks) and measured for the 24 outliers (with LC/UV). MS indicates whether the presence of the theoretical structure was
confirmed (Y) or invalidated (N) by mass spectrometry
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to control whether the compounds in solution match with the
given structures. The second mode allowed identification of
other compounds present in the solution, such as impurities or
products of degradation. As mass spectrometers do not support
high flow rates and high salt concentration in mobile phase, it
was impossible to reproduce the same experimental conditions
of CHI measurements. Data acquisition and processing were
performed with Labsolutions v5.0 software. Measurements
were carried out at 25 °C. A 1.7 μm Kinetex C18 column (50 ×
2.1) purchased from Phenomenex was used. The mobile phase
flow rate was fixed at 0.5 mL/min and the following program
was applied for the elution: 0−0.2 min, 0% B; 0.2−3 min, 0−
100% B; 3−3.2 min, 100% B; 3.2−3.32 min, 100−0% B and
3.32−6 min, 0% B. Solvent A consisted of 5 mM ammonium
acetate in water (pH 7.4), and solvent B was HPLC-grade
acetonitrile. Injection volume was 1 μL. The nitrogen
nebulizing gas flow was set at 1.5 L/min and the drying gas
flow at 15 mL/min. The interface voltage was 4500 V. The
temperature of the block heater was maintained at 400 °C and
that of the desolvation line at 250 °C.
Table 1 summarizes the results where (i) CHI 1 is the first

CHI value, obtained with DMSO solutions in plates received
from the central repository (the whole set was measured with
UV−vis detection and used for the first modeling); (ii) CHIpred
stands for CHI average prediction and corresponds to the
average prediction over the 10 best SVM models in the iterative
procedure; (iii) CHI 2 is the second CHI value, obtained with
fresh solutions prepared from powders (except for those
marked with asterisks) and measured for the 24 outliers (with
LC/UV); and (iv) MS indicates whether the presence of the
theoretical structure was confirmed (Y) or invalidated (N) by
mass spectrometry.
Outlier Analysis. The first 21 outliers from the list (see

Table 1) were experimentally confirmed to be consequences of
various experimental problems and artifacts, many of which
escaped direct observation at the initial high-throughput
measurement stage. The reassessment was extended to three
additional compounds beyond this list of 21 outliers, in order to
check the proposed outlier selection criteria.
Identified problems include chemical degradation, which

could be identified for six compounds: one lactone (outlier 16),
two anhydrides (outliers 5 and 10), and three esters (outlier 3,
8, and 12) were hydrolyzed and the resulting degradation was
found in MS. Out of the 21 compounds, only six had an
experimental comment indicating eventual measurement
complications: three had precipitated in the buffer or in the
DMSO stock solution, one had several peaks, one had a large
peak, and one had a peak of low intensity. In total, 15
compounds had experimental problems where no measurement
complications had been detected.
In order to discuss the results, different compounds have

been regrouped into the following categories: hydrolyzed
compounds, solutions containing several products, structure
not confirmed by MS, no correspondence between the different
CHI measurements, and no experimental problems.
Hydrolyzed Compounds: Outliers 3, 5, 8, 10, 12, and 16. In

all these cases, the MS spectrum of the hydrolyzed molecule is
found, proving the chemical degradation. Such reactions are
generally considered as slow20 at pH = 7.4. However, water
impurities may be contained in the DMSO stock solution due
to its hygroscopic nature, and thus reaction may occur before
the compound is placed in the buffer solution. For outliers 8
and 12, it seems the degradation is fast enough to occur during

the second measurement, and thus two peaks are found during
the second measurement of CHI. In both cases, it can be
assumed that the lowest value corresponds to the acid and the
higher value to the drawn structure. In the case of outliers 5 and
10, powder was not available to remake a fresh solution. It
seems CHI measurements correspond in both cases to the
hydrolyzed compound. In the case of outlier 3, it can be
assumed that the first measured value (CHI = 6.7) corresponds
to the acid. In the case of the lactone (outlier 16), the
compound is not observed and only the hydrolyzed molecule is
detected by MS. It can thus be assumed that the CHI values
correspond to it.

Solutions Containing Several Products: Outliers 4, 6, 7, 9,
11, 14, 15, and 20. The compounds are detected by MS but
with contaminants, indicating a possible degradation or
impurity. Outliers 4 and 11 both have benzyl bromides,
which may be hydrolyzed21 or degraded. In the case of outlier
11, the problem is likely related to low solubility of the
compound, and hence an impurity is measured in LC/UV−vis
with a more intense peak. In the case of outlier 6, the
theoretical structure seems to correspond to the CHI value of
99.8. In the case of outlier 15, the expected compound is
confirmed by LC/MS but has no chromophore to be detected
in LC/UV−vis. Thus, the measured CHI value probably
corresponds to an impurity or a counterion coming out at the
void time.

Theoretical Structure Not Confirmed by MS: Outliers 1, 2,
17, and 19. The compounds are not present during the
experiment. It is impossible to conclude what may have
happened and what is actually measured during the LC/UV
experiment with the given information. Possibly, the compound
was not soluble or the given powder did not contain the
indicated compound due to a human error. In the case of
outlier 17, a substructure of the theoretical structure is found in
MS. This could have been an input or synthesis error. In the
case of outlier 2, the absence may be related to the low
solubility of the compound (measured as 2 μM in pH 7.4
buffer).

No Correspondence between Different CHI Measure-
ments: Outliers 13, 18, and 21. The compounds are identified
by MS, but no matching of the CHI values can be found and no
other compounds are detected. Possibly some wells in the given
microplates may have contained a wrong solution in the first
measurement or the compounds were degraded during storage
and these reactions are not fast enough to be observed during
the second measurement, when the stock solutions are redone.
In the case of outliers 13 and 21, the predicted values are
qualitatively in better accord with the second measurements. In
the case of outlier 18, it is questionable whether the compound
is not hydrolyzed or degraded.

No Experimental Problems: Outliers 22−24. The com-
pounds are detected in the expected ranges of retention times
by LC/MS and both CHI measurements match. It seems these
molecules are not well predicted and the discrepancy may
originate from the limits of the modeling. We note that the
outliers 22 and 24 are above the highest calibration value
(valerophenone, CHI = 96.4).

Extreme Values of CHI. CHI is derived from the ICHI,
which corresponds to the percentage of acetonitrile needed to
achieve an equal distribution between the two phases. It is
calibrated on a set of compounds for which the ICHI is known
and the ICHI is effectively bounded between 0 and 100.
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However, as the CHI is a retention time converted to an ICHI
scale, it can have values outside the range 0−100.
Several outliers confirmed to have experimental problems

have a negative value and it was observed that their CHI
corresponds to the void time of the column; thus no actual
measurement of the molecule’s hydrophobicity is achieved. It
can only be concluded that these have very low hydrophobicity.
In the remaining molecules of the database, three such cases
with values below 0 are found (structures are provided in
Supporting Information section 4) and were thus discarded
from the final modeling data set.
The 57 cases above 100 CHI units have been kept (excluding

outlier 9), as these CHI value convey physicochemical
meaningful differences between the compounds. Indeed, a
retention time can be unambiguously measured: no metro-
logical problem is expected. For this range of CHI, it can be
assumed that a compound with a lower CHI than another has
indeed a lower hydrophobicity. However, the assumption of a
linear relationship between isocratic chromatographic hydro-
phobicity index and log D8 is obviously wrong.
Outlier Dependence on the Modeling Protocol. The

sensitivity of the outlier list with respect to the machine
learning technique was assessed by ranking compounds
according to the average errors reported by alternative PLS
regression models obtained with Weka 3.7.616 and respective
SQS17 models. The PLS models were generated with varying
number of components from 2 to 20 with a step of 2. SQS
models were built on eight descriptor spaces known for their
good predictive proficiency in SVM fitting. The 10 PLS models
used were selected on the criteria of equivalent statistics to best
model, low number of components, and different types of
descriptors. The eliminate-and-refit approach was also used on
PLS.
The other machine learning methods are also able to find

most of these outliers, picked on the basis of SVM models.
These were primarily run to cross-check whether outlier
detection would be strongly impacted by the choice of machine
learning protocols. This is not the case. The outlier lists
obtained by use of PLS or SQS were largely consistent with the
one obtained with SVM.

■ FINAL CONSENSUS MODEL

The compounds experimentally confirmed to have problems
(21 compounds, see Table 1), compounds with CHI values
below 0 (3 compounds), and all compounds with several peaks
(36 compounds) were removed from the initial set. The
“cleaned” data set of 485 compounds has been used to rebuild
SVM models, re-exploring descriptor spaces and parameters.
An external 5CV procedure was applied by splitting the initial
set of molecules five times into five different folds. Best models
were selected on the criterion of a 5CV RMSE better than a
cutoff of 16. Only one model per descriptor space was kept. A
y-randomization strategy22 performed 20 times confirmed the
significance of the selected models. In total, 81 models with
5CV-RMSE ranging from 14.5 to 16 are included in the
consensus model (see Supporting Information section 7 for
details).
It was observed that the best descriptor spaces were covering

small fragments. The best descriptor space is an atom-centric
fragmentation colored by atomic symbols with a range of 2−3
atoms and the use of formal charges. This might be related to
the diversity of the molecules, which do not allow the

extraction of more complex description, or to the additive
character of hydrophobicity.23

An external test set of 195 molecules from the
literature7,8,24−26 was used to evaluate the generalization of
the consensus model. Care was taken to have the most similar
experimental conditions: (i) The pH varies from 7 to 7.4. (ii) A
reversed-phase C18 column with a gradient of acetonitrile/
buffered water was used in all cases. (iii) Calibration was
slightly different in two cases;7,26 hence, an equation was
established to convert the values. (iv) Compounds were
detected by UV−vis in most cases and by mass spectroscopy25

for six molecules.
The model performs reasonably on the external test set with

a RMSE of 16.4 and a determination coefficient R2
det of 0.6 (see

Supporting Information section 5 for details). It is not
surprising to obtain worse results on the external test set
than expected from cross-validation experiments. The main
difference is that the former data set is issued from the literature
whereas the latter is issued from the same laboratory. For data
coming from literature, it is not possible to exclude some
variation in the experimental setup, the least of it being that the
calibration parameters of the CHI vary from one article to the
other. The compounds measured by MS also notably differ
from the other errors (see Supporting Information section 5 for
details).

■ CONCLUSION
To conclude, we suggest the use of QSPR modeling to control
the quality of HTS experiments. In this paper, we present the
largest homogeneous data set of experimentally measured CHI
values. We also propose an algorithm to list, on the basis of
QSPR modeling, outliers that are likely to represent cases of
severe and hidden experimental error. With this algorithm, we
were able to pinpoint experimental problems for 21
compounds. These problems could not be detected during
the experimental screening and they represented about 4% of
the database. The final model was produced from reliable data
and is publically available. The model was used to annotate the
whole CN.
It is our belief that removal of outliers should not be done

automatically (typical strategy in QSAR/QSPR) and outliers
should bring chemists to reflect on their work. Their proper
analysis demands a synergy between experimental screening
teams and chemoinformatics modeling teams. The cost of a
QSPR study is negligible compared to a screening campaign.
The discrepancies observed between QSPR estimates and
screening results are useful to detect experimental problems
otherwise invisible. Such interplay could be a useful addition to
regulatory tests such as those mentioned in REACH.

■ ASSOCIATED CONTENT
*S Supporting Information
Additional text, four tables, and two figures describing (1)
calibration compounds and their associated ICHI values, (2)
statistical parameter definitions, (3) parameters of 10 SVM
models used for eliminate-and-refit protocol to detect outliers,
(4) structures and CHI values of three compounds below 0
after removal of outliers, (5) experimental versus predicted
value of CHI on external test set for the consensus model, (6)
availability of the model for end users (http://infochim.u-
strasbg.fr/webserv/VSEngine.html), and (7) descriptor spaces,
ISIDA Fragmentor2012 options, libsvm options, and statistics
of the 81 models used in the consensus model; and a listing of
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the CHI training set containing all measured values. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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2007, 1173, 110−119.

Analytical Chemistry Article

dx.doi.org/10.1021/ac403544k | Anal. Chem. 2014, 86, 2510−25202520

http://pubs.acs.org
http://pubs.acs.org
mailto:varnek@unistra.fr
http://www.chemaxon.com
http://www.chemaxon.com

